Cooperating Artificial Neural and Knowledge-Based Systems in a Truck Fleet Brake-Balancing Application
نویسنده
چکیده
A proprietary air brake-balance analysis system for trucks gathers five sets of data relating air pressure, time, braking force, and temperature. Each test produces a complex, color graph plotted against axes chosen from pressure, time, and temperature. A human expert can make impressive diagnoses about the brake and air systems after studying these graphs. I describe five artificial neural networks that are trained to render a judgment about these graphs and a knowledge-based system that accepts these judgments and combines them with additional information to arrive at a precise problem identification and a procedure to solve the problem. The brake-balance system is innovative because it uses a rare approach to a real problem: cooperative problem solving and diagnostics between a knowledge-based system and a suite of neu-ral networks. Success rates are 90 percent for the neural nets and 100 percent for the knowledge-based system. The annual savings is at least $100,000.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کاملArtificial neural network to predict the health risk caused by whole body vibration of mining trucks
Drivers of mining trucks are exposed to whole-body vibrations (WBV) and shocks during the various working cycles. These exposures have an adversely influence on the health, c...
متن کاملApplication of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990